Linear Charger for 1Cell Li-ion Battery with System-path IC Monolithic IC MM3538AL

Outline

This IC is a linear charging control IC with built-in system paths, and includes a chip with system path function and lithium ion/lithium polymer secondary battery charging function.

This IC features a built-in load switch with overvoltage detection function and input current limit required for system paths, and built-in power FETs, backflow prevention diodes, and current sensor function required for charging and discharging.

The IC comes equipped with an adapter and USB automatic recognition function, and allows the individual settings for charging control voltage and current with I² C communication.

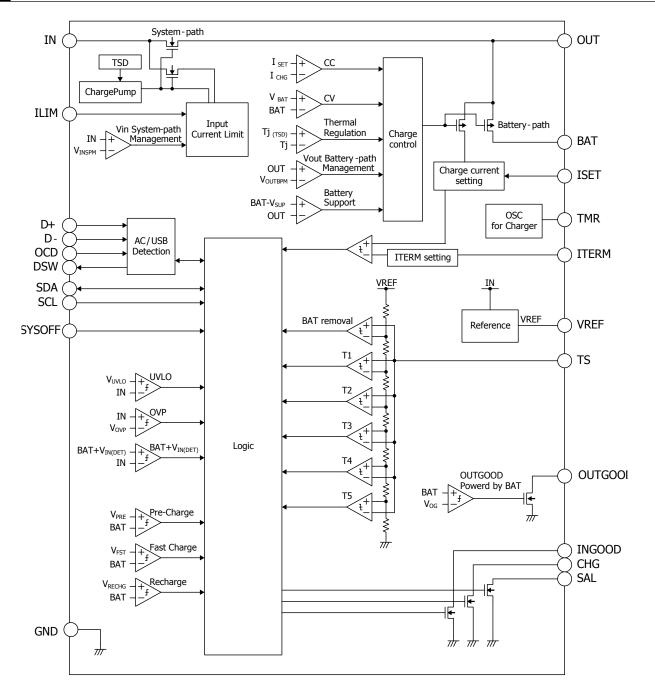
Features

- (1) ADP/USB detection by using of USB bus
- (2) I²Cbus control
- (3) Support for JEITA

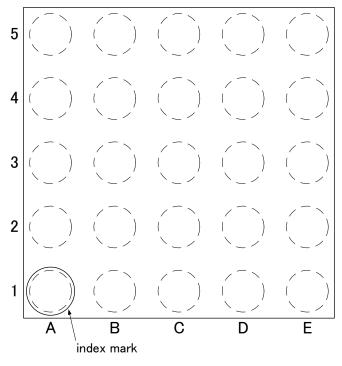
D+/D- pin CC/CV/Charge ON/OFF battery temperature profile

- (4) System path current limit of ADP mode is adjustable by ILIM pin
- (5) 24V High Voltage torelance(IN pin)
- (6) Support for operating system out from battery (built-in low on resistance FET)
- (7) Linear charger control for Li-ion, Li-pol
- (8) Charge current setting by ISET pin
- (9) Charge timer setting by TMR pin
- (10) Indicator : Input power connected

(INGOOD pin) Charge condition (CHG pin) BAT voltage condition (OUTGOOD pin) I²C alarm(SAL pin).


Package

WLCSP-25A


Applications

- (1) Tablets
- (2) Smartphones
- (3) Digital still cameras
- (4) Portable music players
- (5) Portable games

Block diagram

Pin assinmet

(TOP VIEW)

Pin No.	Function
A1	IN
A2	ILIM
A3	D-
A4	D+
A5	GND
B1	INGOOD
B2	OCD
B3	DSW
B4	SAL
B5	OUTGOOD
C1 C2 D2	OUT
C3	ISET
C4	SDA
C5	TMR
D1 E1 E2	BAT
D3	TS
D4	SCL
D5	CHG
E3	VREF
E4	SYSOFF
E5	ITERM

Pin Description

Pin No.	Symbol	Function
A1	IN	Power supply input pin that connects AC adaptor or USB.
A2	ILIM	System-path current limit setting. Connect a resistor between this pin and GND.
A3	D-	USB bus D- input.
A4	D+	USB bus D+ input.
A5	GND	Ground pin.
B1	INGOOD	Input OK indicator. NchMOS open drain output.
B2	OCD	Default System-path current limit setting when USB detected. Input H/L.
B3	DSW	Control pin for external USB signal switch. Inverter output.
B4	SAL	I ² C alarm indicator. NchMOS open drain output.
B5	OUTGOOD	Output OK indicator. NchMOS open drain output.
C1 C2 D2	OUT	System-path output pin. Output power to the system.
C3	ISET	Charge current setting pin. Connec a resistor between this pin and GND.
C4	SDA	I ² C data input and output pin.
C5	TMR	Oscillator frequency setting pin for the charge timer. Connect a capacitor between this pin and GND.
D1 E1 E2	BAT	Li-ion battery connection pin. Charging to Li-ion battery and discharging to OUT pin.
D3	TS	Thermistor input pin. Connect the terminal of the battery pack thermistor.
D4	SCL	I ² C clock input pin.
D5	CHG	Charge status indicator. NchMOS open drain output.
E3	VREF	Battery thermistor reference voltage output. Connect TS pin through a resistor.
E4	SYSOFF	Turn off System-path. Input H/L.
E5	ITERM	End-of-charge current setting pin. Connect a resistor between this pin and GND.

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

Absolute Maximum Ratings

(Except where noted otherwise : Ta=25°C						
Item	Symbol	Ratings	Units			
Storage temperature	Tstg	–55 \sim +150	°C			
Junction temperature	Тјмах	$-40 \sim +150$	°C			
IN pin input voltage	VHin _{MAX}	–0.3 \sim +24	V			
Other pin input voltage	Vin _{MAX}	–0.3 \sim +6.0	V			
IN pin input current	IIN _{MAX}	\sim 2.0	А			
OUT pin output current	IOUT _{MAX}	~ 5	А			
BAT pin input and output current	IBAT _{MAX}	~ 5	A			
Power dissipation(*1)	Pd	~ 1.0	W			

(*1) Board size : $80mm \times 70mm \times 1.6mm$ Material : grass epoxy Layer : 2Layers Wire rate : 90%

Recommended Operation Conditions

	(Except where noted otherwise : Ta=25°C , IN					
Item	Symbol	Ratings	Units			
Operating ambient temperature(*2)	Topr	-40 ~ +85	C			
Junction temperature	Tj	-40 ~ +125	C			
IN pin input voltage	VHin	$4.35 \sim 5.5$	V			
Other pin input voltage	Vin	$0 \sim 5.5$	V			
ILIM setting resistance	RILIM	40 ~ 400	kΩ			
ISET setting resistance	RISET	53.33 ~ 400	kΩ			
ITERM setting resistance	RITERM	40 ~ 400	kΩ			
TMR setting capacitor	Стмг	5 ~ 50	nF			

(*2) Board size : 80mm × 70mm × 1.6mm Material : grass epoxy Layer : 2Layers Wire rate : 90%

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

Electrical Characteristics

(Except where noted otherwise ∶Ta=25℃, IN						C, IN=5V)
Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Units
POWER SUPPLY INPUT						
Consumption current 1	lcc	IN=5V, SYSOFF="L" IN pin input current		1.2	2.0	mA
Consumption current 2	ICCOFF	IN=5V, SYSOFF="H" IN pin input current		300	500	uA
Consumption current 3	ICCBAT	BAT=4.2V, IN=0V BAT pin input current		4	10	uA
Under voltage lock-out	V _{UVLO}	IN=L → H	3.1	3.2	3.3	v
Hysteresis on VUVLO(*3)	V _{UVLO} hys	IN=H → L		100		mV
Overvoltage protection	Vovp	IN=L → H	5.6	5.7	5.8	V
Hysteresis on Vove(*3)	V _{ovP} hys	IN=H → L		175		mV
Input power detection voltage	VIN(DET)	BAT=3.6V, IN=L \rightarrow H Input power detect when IN \ge BAT+V _{IN(DET)}	50	80	130	mV
Hysteresis on $V_{IN(DET)}(*3)$	V _{IN(DET)} hys	BAT=3.6V, IN=H → L	20	35	50	mV
Input power detection deglitch time(*3)	t _{DGL(IN)}	Time measured from IN=0 → 5V(1us rise-time) to INGOOD="L"		1.0		ms
Overvoltage blanking time(*3)	t _{DGL(OVP)}			50		us
OVP recovery deglitch time(*3)	tdgl(rec)	Time measured from IN=10 → 5V(1us fall-time) to INGOOD="L"		1.0		ms
Input power loss to OUT turn-off delay time(*3)	t _{DELAY}	BAT=3.6V Time measured from IN=5 \rightarrow 3V(1us fall-time) to INGOOD="H"		10		ms
Thermal shutdown temperature(*3)	Tj _(TSD)	Tj=L → H		150		°C
Hysteresis on Tj _(TSD) (*3)	Tj _(TSD) hys	Tj=H → L		30		°C

(*3) Guaranteed by design

Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Units	
SYSTEM-PATH · BATTERY-PATH	SYSTEM-PATH · BATTERY-PATH						
	I _{LIM1}	OUT=3.6V	80	90	100	mA	
Input current limit	I _{LIM2}	OUT=3.6V	450	475	500	mA	
	I _{LIM3}	OUT=3.6V		Kilim /Rilim		А	
ILIM setting current range(*4)	ILIM(RNG)		200		1,500	mA	
ILIM setting factor	KILIM	Ілмз=1А	72,000	80,000	88,000	AΩ	
ON resistance of System-path(*4)	Ron(sys)			200	300	mΩ	
ON resistance of Battery-path(*4)	Ron(BAT)			50	75	mΩ	
Voltage of input current limit operation	VINSPM		4.35	4.50	4.63	V	
OUT pin short detection voltage	V _{OUT(SC)}		0.8	0.95	1.1	V	
Battery support voltage(*4)	VSUP	V _{SUP} =OUT-BAT when Battery support mode BAT=3.8V	150		300	mV	

(Except where noted otherwise : Ta=25 $^\circ\!C$, IN=5V)

(*4) Guaranteed by design

		(Ex	cept where r	noted otherw	ise : Ta=25°	C,IN=5V)	
Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Units	
CHARGE CONTROL							
Initialize time(*5)	t _{INIT}	1clk=Tosc		2		clk	
Fast charge current setting range(*5)	ICHG(RNG)	This is applied to "1 of ISET"	200		1,500	mA	
Fast charge current	IFSTCHG	This is applied to "1 of ISET"		K _{ISET} /RISET		А	
Fast charge current setting factor	KISET	R _{ISET} =160k I _{CHG} ≧ 200mA	76,000	80,000	84,000	AΩ	
Fast charge current accuracy @small current	I _{ACC}	R _{ISET} =160kΩ I _{CHG} < 200mA	-10		+10	mA	
Pre-charge current	IPRECHG			K _{PRECHG} /RISET		А	
Pre-charge current setting factor	KPRECHG	$R_{ISET}=160k\Omega$	6,000	8,000	10,000	AΩ	
Relief charge current	IRELCHG		4	8.5	13	mA	
End-of-charge current setting	I	USB 500mA or ILIM mode	20		200	mA	
range(*5)	TERM(RNG)	USB 100mA mode	6.7		66.7	mA	
End-of-charge detection current	I _{TERM}			Kiterm /Riterm		А	
End-of-charge detection current	K	USB 500mA or ILIM mode R_{ITERM} =160k Ω	6,000	8,000	10,000	AΩ	
setting factor	Kiterm	USB 100mA mode R _{ITERM} =160kΩ	2,000	2,667	3,333	AΩ	
End-of-charge detection deglitch time(*5)	t _{DGL(TERM)}	1clk=T _{osc}		8		clk	
BAT pull current(*5)	IPULL			80		mA	
BAT pull time(*5)	t _{BAT(DET)}			32		ms	

(*5) Guaranteed by design

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

		(Except where noted otherwise: Ta=25°C, IN=5					
Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Units	
Start voltage of pre-charge	V _{PRE}	BAT=L → H	1.9	2.0	2.1	V	
Hysteresis on VPRE(*6)	V_{PRE} hys	BAT=H → L		100		mV	
Start voltage of fast-charge	V _{FST}	BAT=L → H	2.7	2.8	2.9	V	
Hysteresis on V _{FST} (*6)	V _{FST} hys	BAT=H → L		100		mV	
Pre-charge to fast charge transition deglitch time(*6)	t ptof	1clk=T _{osc}		16		clk	
	V _{BAT1}		4.17	4.20	4.23	V	
Constant voltage control	V _{BAT2}		4.12	4.15	4.18	V	
(VBAT1>VBAT2>VBAT3>VBAT4)	V _{BAT3}		4.07	4.10	4.13	V	
	V_{BAT4}		4.02	4.05	4.08	V	
Voltage of recharge detection	V_{RECHG}			V _{BAT} -0.20V		V	
Voltage of charge current limit operation	VOUTBPM		4.15	4.20	4.25	V	
Thermal regulation temperature(*6)	Tj _(REG)		85	100	115	C°	

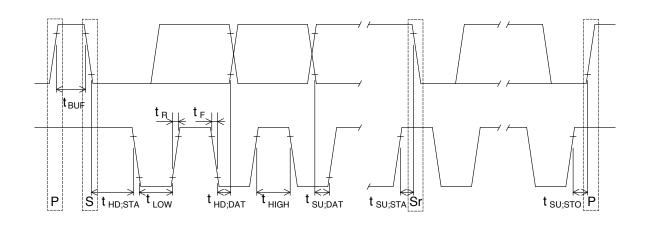
(*6) Guaranteed by design

			(Except when	re noted other	wise : Ta=25	℃,IN=5V)
Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Units
BATTERY TEMPERATURE DETEC	TION	•				•
VREF pin output voltage	V _{REF}		2.74	2.80	2.86	V
VREF pin source current ability	I _{REF}	Decrease to 98% of V_{REF}	2			mA
VREF pin leakage current	I _{VREF(LEAK)}	V _{REF} =3.1V			1	uA
Battery removal detection TS pin voltage	V_{TBR}	TS=L → H	85.0	90.0	95.0	%V _{REF}
	V T10	T1 detection TS=L → H	76.6	78.1	79.6	$%V_{REF}$
Battery temperature detection TS	V _{T20}	T2 detection TS=L → H	66.2	67.7	69.2	$%V_{REF}$
pin voltage	V _{T30}	T3 detection TS=H → L	27.5	29.0	30.5	%V _{REF}
when I ² C 05h b07= "0"	V _{T40}	T4 detection TS=H → L	23.4	24.9	26.4	%V _{REF}
	V T50	T5 detection TS=H → L	16.7	18.2	19.7	%V _{REF}
	V _{T11}	T1 detection TS=L → H	71.6	73.1	74.6	$%V_{REF}$
Battery temperature detection TS	V _{T21}	T2 detection TS=L → H	62.7	64.2	65.7	$%V_{\text{REF}}$
pin voltage	V _{T31}	T3 detection TS=H → L	31.5	33.0	34.5	$%V_{\text{REF}}$
when I ² C 05h b07= "1"	V _{T41}	T4 detection TS=H → L	27.9	29.4	30.9	%V _{REF}
	V _{T51}	T5 detection TS=H → L	21.7	23.2	24.7	%V _{REF}
Hysteresis on TS pin voltage detection(*7)	V⊤shys			2		$%V_{\text{REF}}$
TS pin leakage current	I _{TS(LEAK)}	TS=3.1V			1	uA

(*7) Guaranteed by design

(Except where noted otherwise : Ta=25°C , IN=5							
Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Units	
OSCILLATOR							
Oscillation period	Tosc	$\begin{array}{l} R_{\text{ISET}} = 160 k\Omega \\ C_{\text{TMR}} = 15 nF \end{array}$	4.2	6.0	7.8	ms	
Pre-charge timer(*8)	TPRE	T _{BASE} =T _{OSC} ×2 ²⁰ I ² C default		TBASE		s	
Total charge timer(*8)	T _{TOTAL}	T _{BASE} =T _{OSC} ×2 ²⁰ I ² C default		6 ×Т _{вазе}		s	
USB DETECTION							
D+/D- detection time(*8)	t _{DDE}			128		ms	
D+/D- detection-sw release time(*8)	t _{DRE}			256		ms	
Dead time of D+/D-detection(*8)	tosw			1		ms	
DSW pin sink current ability	$V_{\text{DSW}(\text{SI})}$	I _{SINK} =1mA when DSW="L"			0.25	V	
DSW pin source current ability(*8)	V _{DSW(SO)}	I _{SOURCE} =1mA when DSW="H"	4.50			V	
Bias at D+ pin(*8)	V _{D+}	can source at least 150uA	0.475	0.600	0.700	V	
D+ pin output current limit(*8)	I _{D+}	D+=0V			1.5	mA	
D-pin sink current(*8)	I _{D-}	D-=0.5V	10	30	50	uA	
D+ pin leakage current	I _{D+(LEAK)}	not in detection mode			1	uA	
D-pin leakage current	ID-(LEAK)	not in detection mode			1	uA	
D+/D- comparator threshold	V _{DC}	L→H	0.35	0.40	0.45	V	
D+/D-Hysterisis on V _{DC} (*8)	V _{DC} hys	H→L		42		mV	

(*8) Guaranteed by design

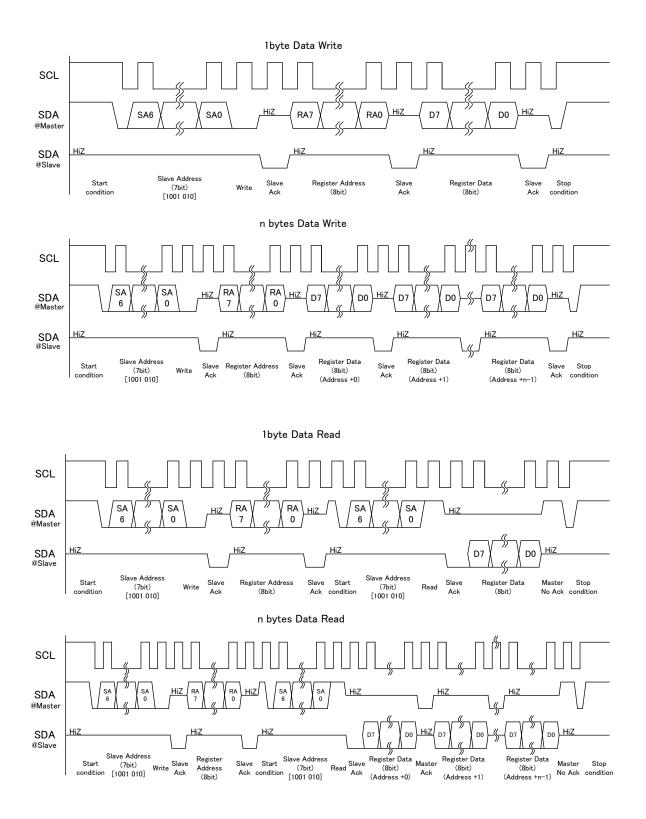

				e noted otherw	lise: Ta=250	, IN-5V)
Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Units
OUTGOOD PIN						
OUTGOOD threshold	V _{OG}	BAT=L → H	2.89	2.95	3.01	V
Hysterisis on V _{OG} (*9)	V _{og} hys	BAT=H → L		0.15		V
LOGIC INPUT AND OUTPUT						
Low level input voltage	VL	SYSOFF, OCD, SDA, SCL			0.4	V
High level input voltage	V _H	SYSOFF, OCD, SDA, SCL	1.5			V
Built-in pull-down resistor value	R _{PD}	SYSOFF, OCD		100		kΩ
Open drain pin sink current ability	Vopd	I _{sınк} =5mA when Pin="L"			0.25	V

(Except where noted otherwise : Ta=25 $^{\circ}$ C , IN=5V)

(*9) Guaranteed by design

			(Except where	e noted otherw	rise : Ta=25℃	, IN=5V)
Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Units
I ² C BUS						
Clock frequency	f _{sc∟}		10		400	kHz
Data transfer wait time(*10)	t _{BUF}		1.3			us
SCL start hold time(*10)	t _{hd;sta}		0.6			us
SCL low level hold time(*10)	t∟ow		1.3			us
SCL high level hold time(*10)	tнigн		0.6			us
Start condition setup(*10)	t _{su;sta}		0.6			us
SDA data hold time(*10)	$\mathbf{t}_{HD;DAT}$		100			ns
SDA data setup time(*10)	tsu;dat		100			ns
SDA,SCL rise time(*10)	t _R				300	ns
SDA,SCL fall time(*10)	t⊧				300	ns
Stop condition setup time(*10)	t su;sто		0.6			us

(*10) Guaranteed by design



Function

(1) ABOUT I²C BUS

I²C BUS is inter bus system controlled by 2 lines (SDA,SCL). Data are transmitted and received in the units of byte and Acknowledge. It is transmitted by MSB first from the Start condition.

The data format is set as shown in the following figure.

(2) I²C REGISTER MAP

	b07 b06 b05 b04		b04	b03 b02		b01	b00		
Slave Address		1	0	0	1	0	1	0	R = 1 W = 0
	01h	CV Setting	(T1 ~ T2)	CV Setting	(T2 ~ T3)	CV Setting	CV Setting	CV Setting (T4 \sim T5)	
		R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	02h 03h 04h 05h	CC S	Setting (T1 -	~ T2)	CC S	Setting (T2 -	Charge Enable	SAL Release	
ess		R/W	R/W	R/W	R/W	R/W	R/W	R/W	W
Register Address		cc s	Setting (T3 -	~ T4)	cc s	Setting (T4 -	USB Current Limit		
gist		R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Be		04h Battery Temperature		ature	Charger Time-out			ISET Short	ADP/USB
		R	R	R	R	R	R	R	R
		NTC	Pre	e-charge Tir	mer	Tota	al charge Ti	mer	
		R/W	R/W	R/W	R/W	R/W	R/W	R/W	R

R : Read Only (Write data is ignored) W : Writable ("0" is returned for read-in) R/W : Readable and Writable

(3) I²C REGISTER EXPLANATION

R/W	CV Setting (T1 \sim T2)					R/W		~ T3)			
01h	b07	b	06	V		01h	b05	b	04	V	
default	0	(0	4.05		default	0	(0	4.05	
	0		1	4.10			0		1	4.10	
	1	(0	4.15			1		0	4.15	
	1		1	4.20			1		1	4.20	
R/W	W CV Setting (T3 ~ T4)						CV Setting (T4 \sim T5)				
01h	b03	-	02	V		01h	b01	r • • •		V V	
default	0	(0	4.05		default	0	(0	4.05	
	0		1	4.10			0		1	4.10	
	1	(0	4.15			1	(0	4.15	
	1		1	4.20			1		1	4.20	
R/W	(CC Setting (T1 \sim T2)				R/W	CC Setting (T2 \sim T3)				
02h	b07	b06	b05	of ISET		02h	b04	b03	b02	of ISET	
default	0	0	0	1/8		default	0	0	0	1/8	
	0	0	1	2/8			0	0	1	2/8	
	0	1	0	3/8			0	1	0	3/8	
	0	1	1	4/8			0	1	1	4/8	
	1	0	0	5/8			1	0	0	5/8	
	1	0	1	6/8			1	0	1	6/8	
	1	1	0	7/8			1	1	0	7/8	
	1	1	1	1			1	1	1	1	

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

R/W		00.50	tting (T3	a. T1)	R/W		
03h	b07	b06	b05	03h			
default	0	000	0	of ISET 1/8	default		
uelault	0	0	1	2/8	uelault		
		1		3/8			
	0		0				
	0	1	1	4/8			
	-	0	0	5/8			
	1	0	1	6/8			
	1	1	0	7/8			
	1	1	1	1			
R/W		Cha	arge Ena	ble	R/W		
02h	b01			atus	02h		
default	0		No d	charge	default		
	1		Cha	arging			
R/W			LISB (Current Limit			
03h	b01	b00		Maximum input c	urrent		
default	0	0		00mA. USB 100m			
uelault	0	1		00mA. USB 500m			
	1	0	50	ILIM Setting			
	1	1	Sta	ndby(USB suspe			
	I	I			nu moue)		
R				Temperature			
04h	b07	b06	b05	Stat			
	0	0	0	Battery not			
	0	0	1	~ 1			
	0	1	0	T1 ~	T2		
	0	1	1	T2 ~	Т3		
	1	0	0	T3 ~	T4		
	1	0	1	T4 ~	T5		
	1	1	0	T5 ·	~		
R		Char	ger Time		R		
04h	b04			atus	04h		
0411	0			ormal	0411		
	1			ne-out			
R		[]	_IM Shor		R		
04h	b02		St	atus	04h		
	0			ormal			
	1		S	hort			
R		A	ADP/USB	<u> </u>	R/W		
04h	b00	, 		atus	05h		
V III	0			Power			
	1			Power	default		
=							
R/W			charge Ti		R/W		
05h	b06	b05	b04	of TBASE	05h		
default	0	0	0 1				
	0	0	1 2				
	0	1	0	3			
	0	1	1	4			
	1	0	0	5	default		
	1	0	1	6			
	1	1	0	7			
	1	1	1	No timer			

R/W	CC Setting (T4 \sim T5)						
03h	b04	b03	b02	of ISET			
default	0	0	0	1/8			
	0	0	1	2/8			
	0	1	0	3/8			
	0	1	1	4/8			
	1	0	0	5/8			
	1	0	1	6/8			
	1	1	0	7/8			
	1	1	1	1			
R/W	SAL Release						

R/W	SAL Release					
02h	b00	Status				
default	0	Normal				
	1	Release				

Input OVP

ISET Short

NTC

Status Normal

OVP

Status

Normal

Short

Status

b03

0 1

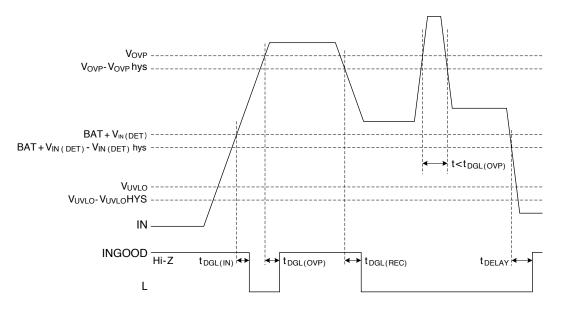
b01

0

1

b07

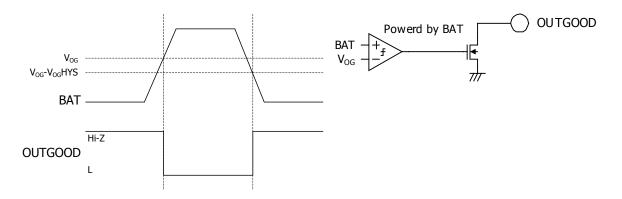
Juiuo			0011	501		014140			
3 Power				0		for NCP15WF104F03RC			
Power			default	1		for NCP15XH103F03RC			
Timer			R/W	Total Charge Timer					
	of TBASE		05h	b03	ł	b02	b01	of T _{BASE}	
	1			0		0	0	2	
	2			0		0	1	3	
	3			0		1	0	4	
	4			0		1	1	5	
	5		default	1		0	0	6	
	6			1		0	1	7	
	7			1		1	0	8	
	No timer			1		1	1	No timer	


Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
• The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

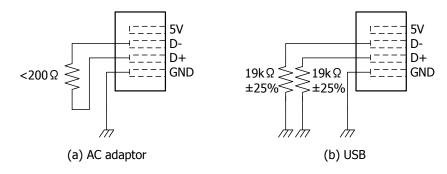
(4) POWER SUPPLY INPUT

MM3538 normal operation starts when all the following conditions are met, and determined that the normal power supply is connected.

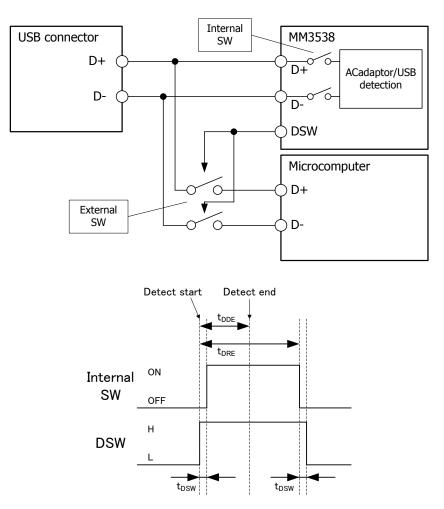
 $\begin{array}{l} (1) \text{ IN } > \text{VUVLO} \\ (2) \text{ IN } > \text{BAT + VIN(DET)} \\ (3) \text{ IN } < \text{VOVP} \end{array}$


INGOOD pin is NchMOS open drain output. Open drain MOS is turned on when the normal powersupply is connected.

When power is not entered, MM3538 has been on the path to the battery to supply power from the battery to OUT pin.


(5) OUTGOOD PIN

OUTGOOD pin is NchMOS open drain output. When BAT pin voltage becomes higher than 2.95V (=VOG), open drain MOS is turned on. Moreover, this function operates on the voltage from BAT pin. For the reason, it operates by battery only.



(6) AC ADAPTOR • USB DETECTION

An AC adaptor and USB bus have composition as shown in each following figure. MM3538 uses D+ pin / D- pin, judges automatically whether the inputted power supply is an AC adaptor or a USB bus, and operates an input limit. Moreover, a judgment result is displayed on an I²C register (= I²C 04h b00).

The internal SW is turned on after a power supply input, and detection is started, and detection is ended in 128ms (= tDDE) after. Furthermore, the inside SW is turned off in 128 ms after (a total of 256 ms (=tDRE)). When the inside SW is ON, a DSW terminal outputs "H". As shown in the following figure, it is used for ON/OFF control of the external SW. MM3538 and other ICs will not be simultaneously connected to a D+/D-line.

(7) IN CURRENT LIMIT

MM3538 restricts the system-path current which flows into IN pin.

When detected as USB, the input current limit is set by OCD pin. Then, it can change into other preset values using I²C control. Please refer to another section for OCD pin.

When detected as AC adaptor, the input current limit is set by ILIM pin. Then it can't change into other preset values using I2C control.

The setting current by ILIM pin is as follows.

$$I_{\text{LIMB}}\left[A\right] = \frac{K_{\text{ILIMB}}\left[A^{\bullet}\Omega\right]}{R_{\text{ILIM}}\left[\Omega\right]} = \frac{80,000 \left[A^{\bullet}\Omega\right]}{R_{\text{ILIM}}\left[\Omega\right]}$$

(8) OCD PIN

When detected as USB by the AC adaptor/USB detection, it is a terminal which sets up the initial value of an input current limit.

When OCD="L", input current limit is set to 100mA.
When OCD="H", input current limit is set to 500mA.

Although an initial value is set up with the above-mentioned value, it can be changed into other preset values after that using I2C control. OCD pin is a terminal which sets up an initial value, after power activation, cannot change a preset value by OCD pin.

(9) IN pin voltage control System-path management (IN-SPM)

MM3538 will decrease an input limit, if IN terminal voltage turns into voltage lower than 4.5V (=VINSPM). Moreover, charge operation is stopped. This function becomes effective only when an input power source is detected as USB, and it prevents crash of USB bus of the host side.

(10) SYSOFF PIN

It is possible to turn off a system-path compulsorily by making SYSOFF pin into "H".

(11) CHARGE CONTROL

Charge is started by making ChargeEnable (= I^2C 02h b01) into "Charging" in the state where there are an input power source and a Li-ion battery. Pre-charge current and Fast charge current will be set up using an ISET pin, and Pre-charge current will be 1/10 of Fast charge current. End-of-charge detection current is set up using ITERM pin. When an input limit is in 100mA mode, End-of-charge detection current is set to one third of the preset values in an ITERM pin. The setting current in ISET pin and ITERM pin is as follows.

$$I_{FSTCHG}[A] = \frac{K_{ISET}[A \cdot \Omega]}{R_{ISET}[\Omega]} = \frac{80,000 [A \cdot \Omega]}{R_{ISET}[\Omega]}$$
$$I_{PRECHG}[A] = \frac{I_{FSTCHG}[A]}{10} = \frac{K_{ISET}[A \cdot \Omega]}{10 \cdot R_{ISET}[\Omega]} = \frac{8,000 [A \cdot \Omega]}{R_{ISET}[\Omega]}$$
$$I_{TERM}[A] = \frac{K_{ITERM}[A \cdot \Omega]}{R_{ITERM}[\Omega]} = \frac{8,000 [A \cdot \Omega]}{R_{ITERM}[\Omega]}$$

Charging current is controlled by general CCCV control. However, charging current decreases during CC control at the following factor developmental time.

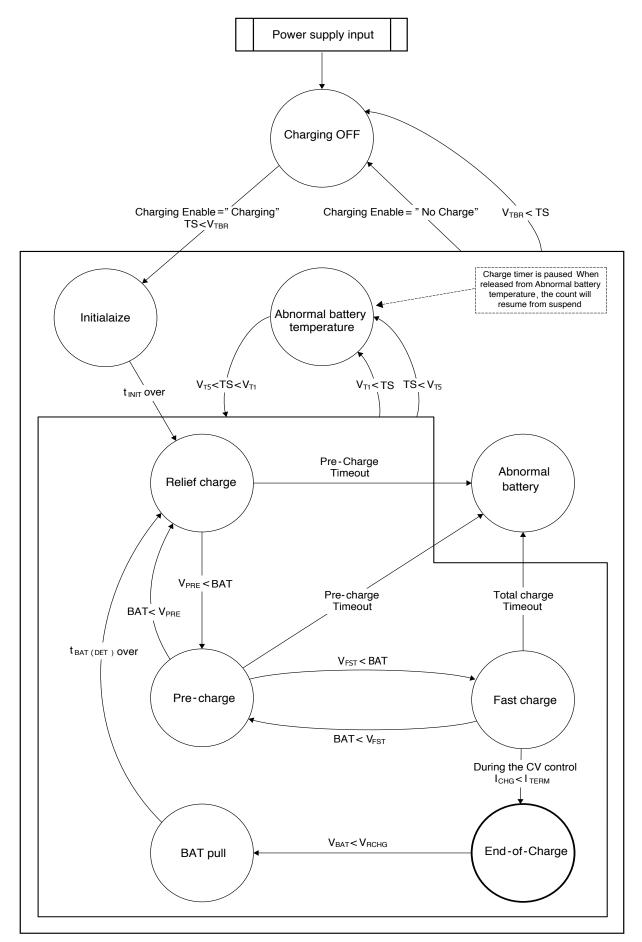
When OUT terminal voltage falls and the charging current limit function operates. When chip temperature rises and the thermal regulation function operates.

Charge is suspended when the abnormalities in battery temperature occur. And a charger timer stops. A charge timer stops at this time. When these factors are canceled, charge operation is resumed and a charge timer resumes too.

When Pre-charge timer or Total charge timer is time-up, remove power supply or remove battery or make ChargeEnable into "No charge" to reset.

CHG pin is NchMOS open drain output. While charging current is flowing, open drain MOS is turned on.

Charge Timing Chart Pre-charge (Re-charge) Status Initialaize Relief charge Pre-charge Fast charge End-of-charge BAT pull Fast charge (Re-charge) Charging **Charging Enable** No Charge I FSTCHG GL(TERM t_{PTOF} t_{BAT(DET)} t_{iNIT} t_{PTOF} Charge current I_{PRECHG} I_{TERM} I_{RELCHG} 0mA - I_{PULL} V_{BAT} VRECHG BAT voltage V_{FST} V PRE


Hi-Z

L

CHG pin

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

Charge State Machine

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

(12) CHARGE CURRENT LIMIT

When the sum total of OUT pin load current and charging current is larger than an input current limit, OUT pin voltage falls. If OUT pin voltage decreases from 4.2V (=VOUTBPM), charging current will be restricted and the fall of OUT pin voltage will be prevented. Charge status does not become full charge while this function is operating. Even if the charging current limit function operates and it restricts charging current to 0mA, when OUT pin voltage continues falling, the battery support function operates.

(13) THERMAL REGULATION

If the chip temperature of MM3538 rises during charge operation and it becomes 100° C (= Tj (REG)), charging current will be restricted and generation of heat will be prevented. Even if the thermal regulation function operates and it restricts charging current to 0mA, if chip temperature continues rising and chip temperature rises to 150° C (= Tj (TSD)), the thermal shutdown function will operate.

(14) THERMAL SHUTDOWN

In order to protect MM3538 from thermal destruction, the thermal shutdown circuit is built in, and if chip temperature rises to $150^{\circ}C$ (=Tj(TSD)), it will be in a thermal shutdown state. A system-path is turn off, and a battery-path is turn ON during a thermal shutdown.

(15) CHARGE TIMER

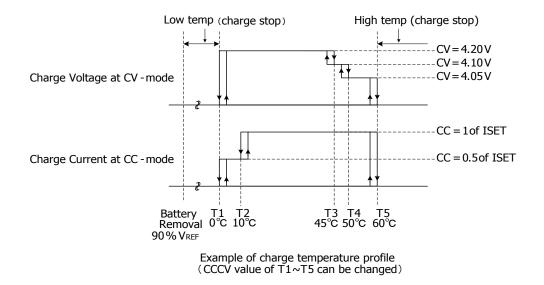
For safety reservation of charge, MM3538 builds in the pre-charge timer and the total charge timer. judges with it being unusual with a timer passing the deadline of, and suspends charge. Charge is suspended when time-up happened. It is as follows during the count of each timer.

- Pre-charge timer : Relief charge + Pre-charge
- Total charge timer : Relief charge + Pre-charge + Fast charge

The clock frequency used by the pre-charge timer and a total charge timer is determined with the resistance of ISET pin and capacity of TMR pin.

$$T_{OSC}[s] = \frac{2 \cdot C_{TMR}[F]}{0.8 [V] / R_{ISET}[\Omega]}$$

 $T_{BASE}[s] = T_{OSC}[s] \times 2^{20}$


The time of a pre-charge timer and a total charge timer sets up what time of the obtained base frequency (= TBASE) is used by I2C (=I2C 05h b06~b01).

During fast charge, when charging current decreases by operation of a charging current limit function, in roportion to the reduction rate, a clock frequency becomes small. For example, when a fast charge current setup is 500mA and it decreases to 250mA by the above-mentioned factor, a clock frequency is set to one half and, as a result, the time of a charge timer doubles.

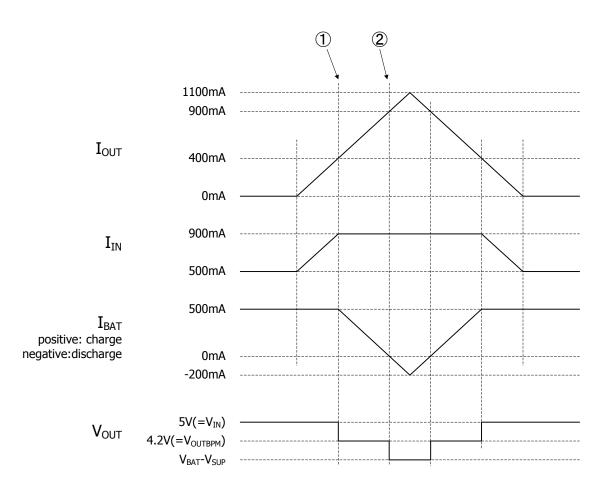
(16) CHARGE TEMPERATURE PROFILE

MM3538 corresponds to the charge temperature profile which JEITA recommends. Each CCCV value can be set up in four (T1 \sim T2, T2 \sim T3, T3 \sim T4, and T4 \sim T5) using I²C (=I²C 01h \sim 03h). Moreover, MM3538 is optimized by the two following kinds of thermo sensitive registers, and can be chosen by I²C (=I²C 05h b07).

NCP15WF104F03RC (100kohm, 4250K, Murata Manufacturing)
 NCP15XH103F03RC (10kohm, 3380K, Murata Manufacturing)

(17) SAL PIN

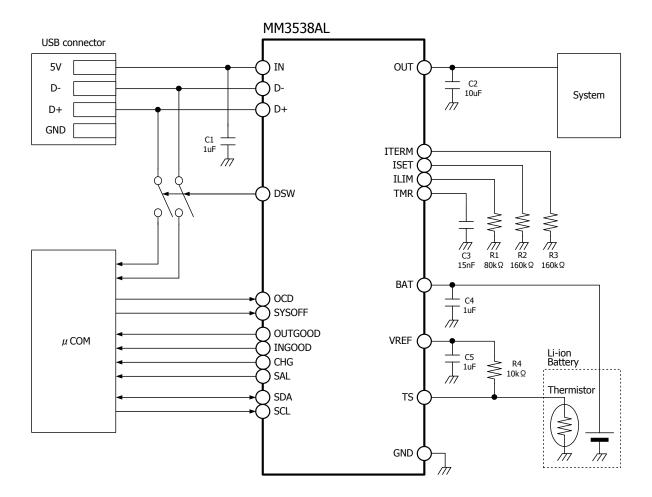
When the following factor occurs and the contents of the I^2C register change, a SAL terminal tells you. This pin is a NchMOS open drain output. When the contents of the I^2C register change, open drain MOS is turned on.


- (1) When battery-temp becomes low-temp (\sim T1) or high-temp (T5 \sim) (=I²C 04h b07 \sim b05)
- 2 When pre-charge timer or total charge timer is time-up ($=I^2C$ 04h b04)
- (3) Input overvoltage protection function operates (= I^2C 04h b03)
- (4) When ILIM pin short to GND (= I^2C 04h b02)
- (5) When ISET pin short to GND (= I^2C 04h b01)

After a SAL pin becoming "L", in order to return to H", it is necessary to control SAL Release (= I^2C 02h b00). While it has been in the state which the above-mentioned factor generated, even if it performs SAL Release, since there is no change in the contents of the I^2C register, a SAL pin does not react again.

(18) BATTERY SUPPORT

Although the current load of an OUT terminal is large and the charging current limit function is operating, a battery-path is turned on, if OUT terminal voltage continues falling and it falls from BAT-150~300mV(= V_{SUP}). By this, current will be supplied from both an input power source and a battery, and the fall of OUT terminal voltage is prevented. As an example, the timing chart at the time of the following setup is shown.


[The example of a setting] Charge Current setting = 500mA USB Current limit = 900mA (use ILIM pin)

The sum total of I_{OUT} and I_{BAT} becomes larger than 900mA, and V_{OUT} falls by an input limit function. Simultaneously, the charging current limit operates and charging current decreases so that V_{OUT} may not fall.

By a charging current limit function, even if it controls charging current to 0mA, when V_{OUT} falls, the battery support function operates and it prevents the fall of V_{OUT} .

Application Circuit

These circuits are typical examples provided for reference purposes, so in actual applications, the circuit constants, conditions and operations should be thoroughly studied.

Mitsumi Electric Co., Ltd. assumes no responsibility for any trouble or damage as a result of the use of these circuits.

Mitsumi Electric Co., Ltd. assumes no responsibility for any infringement of industrial property or any other right of a third party or us, as a result of the use of these circuits.