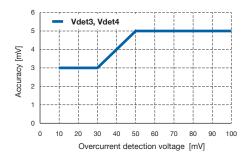
N channel high side FET drive by charge pump

MM3746 Series

Outline

MM3746 series are protection ICs with charger pump and drive high side N channel FET for Lithium-ion and Lithium-polymer secondary battery. This IC is most suitable for the intelligent battery pack with which I communicate data between the battery

pack and the system.


And MM3746 series has a temperature detection by using a NTC Thermistor, protects the battery pack and system from over temperature.

Features

(Unless otherwise specified, Ta=25°C)

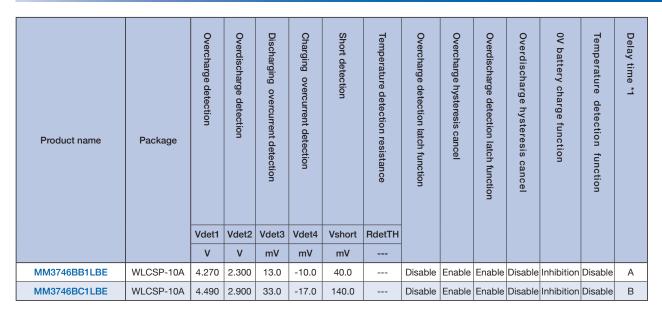
(1) Range and accuracy of detection/release voltage

- *1 Accuracy of overcurrent detection voltage (Ta=25°C)

- (2) Temperature detection function......Selectable "Enable" or "Disable"
- (3) 0V battery charge functionSelection from "Permission" or "Inhibition"
- (4) Current consumption (Not include NTC bias current)
 - Normal modeTyp. 6.0μA, Max. 10.0μA

Max. 1.2µA (Overdischarge latch function Disable)

Pin assignment

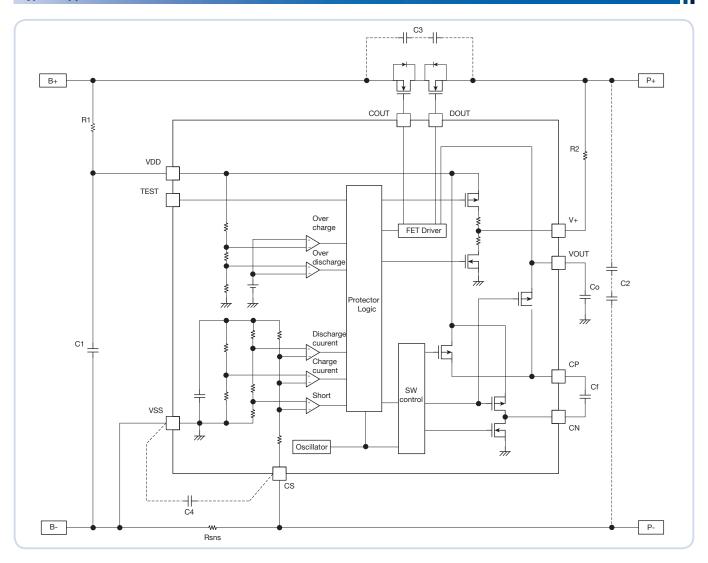

■ WLCSP-10A

(Top view)

		CS	DOUT		
COUT	(A3)	B3	(C3)	(D3)	V+
VDD	A2			(D2)	VOUT
VSS	(A)	(B1)	(C1)	(Đ)	CP
		TH (TEST)	CN		

	Pin no.	Symbol	Function		
	A1	VSS	Negative power supply voltage input terminal		
	A2	VDD Positive power supply voltage input terminal			
Γ	АЗ	COUT	Charge FET control terminal		
	B1	TH(TEST) Temperature level detect terminal (Test terminal)			
ľ	В3	33 CS Current level detect terminal			
	C1	CN	Flying capacitor connecting terminal		
Γ	СЗ	DOUT	Discharge FET control terminal		
	D1	· · · · · · · · · · · · · · · · · · ·			
	D2				
	D3	V+	Charger positive voltage input terminal		

LINE UP


*1 Delay time

	tVdet1	tVdet2	tVdet3	tVdet4	tshort1	tVtdet
	ms	ms	ms	ms	μs	
Α	1020	128	16.0	8.0	250	
В	1020	16	16.0	8.0	250	

Please inquire to us, if you request a rank other than the above.

MM3746 Series

Typical application circuit

- The characteristics of the charge pump (ripple voltage, output current ability, etc.) are decided by the capacitor (C1, Cf, Co). Please select ceramic capacitor with a small ESR(Equivalent Series Resistance). Please arrange Cf near the CN and CP terminal.
- R1 and C1 help to stabilize a supply voltage fluctuation. 0.1µF or more is recommended for C1 to secure stable operation. The value of Cf and Co affects the output current drivability and the output voltage ripple respectively. The recommend value of Cf and Co is 0.047µF to drive CFET and DFET with no fail.
- The detection voltage rises by the current consumption (IDD) of IC when R1 is too large. 300Ω or less is recommended for R1. The variation of overcharge detection voltage (ΔVdet1) is expressed in the following equation.
 ΔVdet1 = R1 * IDD
- R1 and R2 are useful for the current limiting resistance if a charger is connected reversely or a high-voltage charger that exceeds
 the absolute maximum rating is connected. If total value of "R1+R2" is too small, it may exceed allowed power dissipation of IC.
 Please have total value of "R1 and R2" should be more than 300ohm. If R2 is too large, CFET may not be able to turn off, therefore
 please use 10kohm or less.
- C2, C3 and C4 are useful to improve the system stability against the voltage ripple and exogenous noise. Please consider whether
 or not capacitors should be placed, the area should be placed, and capacitance value in consideration of the system characteristic.
 Especially C4 prevents false discharge overcurrent detection.
- Current threshold of discharging overcurrent detection and short detection (Idoc, Icoc, Ishort) are expressed in the following equations.

Idoc = Vdet3 / Rsns Icoc = Vdet4 / Rsns Ishort = Vshort / Rsns